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Synthesis of 4-methoxy-1H-phenalen-1-one: a subunit related
to natural phenalenone-type compounds
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Abstract

4-Methoxy-1H-phenalen-1-one (4-methoxyperinaphthenone, 1), a subunit found in some Musa phytoalexins and related natural
products from the Haemodoraceae, was synthesized starting from 2-methoxynaphthalene in five steps and an overall yield of 36%. A
Heck–Fujiwara coupling between ethyl acrylate and 1-bromonaphthalene afforded the corresponding (E)-naphthylpropanoic acid which,
after hydrogenolysis, was subjected to a one-pot Friedel–Crafts acylation–DDQ dehydrogenation procedure to furnish 1.
� 2008 Elsevier Ltd. All rights reserved.
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The search for phytoalexins in Musa over the past 15
years resulted in the isolation and structural identification
of 9- and 4-phenylphenalenones and related compounds
such as dimeric phenylphenalenones, phenylnaphthalic
anhydrides, perinaphthenones, and an oxabenzochryse-
none.1 In addition, even more structures of the phenale-
none-type have been found in the Haemodoraceae,
Pontederiaceae, and Strelitziaceae.2 Some of these com-
pounds have been tested as antifungal (Mycosphaerella

fijiensis, Colletotrichum musae, Fusarium oxysporum), and
antiprotozoal agents (Leishmania donovani) showing mod-
erate to good activities.3 Whereas, the bioactivity of 9-phe-
nylphenalenones has been studied in some detail, little
information is available about the activity of analogs. This
can be explained by the fact that all of these phenalenone-
related compounds occur in only minute amounts in plants
and efficient syntheses have been developed primarily for
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9-phenylphenalenones.4 Therefore, it is desirable to
develop new synthetic routes, especially for the scarcer
members of the phenalenone family in order to expand
the accessibility of these phenolic compounds for biological
assays.

Phenalen-1-ones (perinaphthenones) substituted at the
C4 position are common subunits of some of the less abun-
dant natural phenalenone-related compounds. 4-Methoxy-
1H-phenalen-1-one (4-methoxyperinaphthenone, 1) is of
special interest because of the possibilities that this com-
pound can be used as either starting material for the syn-
thesis of oxabenzochrysenones5 or to obtain fused
dimeric phenylphenalenones by introducing a phenyl ring
in the C9 position via a Grignard reaction.4 Also, it is plau-
sible that 4-phenylphenalenones can be synthesized via
cross-coupling reactions using a suitable C4-substituted
compound (Scheme 1).5

Here, we report the synthesis of 1 using a Heck–Fujiwara
coupling and a Friedel–Crafts acylation as the C–C bond
forming reactions starting from 2-methoxynaphthalene.

Perinaphthenone can be obtained in one step by
condensing 2-naphthol with glycerol, sulphuric acid, and
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Scheme 1. 4-Methoxy-1H-phenalen-1-one (4-methoxyperinaphthenone,
1) as a plausible retrosynthetic intermediate of natural phenylphenale-
none-related compounds.
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Scheme 3. Reagents and conditions: (a) NBS, neutral Al2O3, 90 �C, 1 h;
(b) Pd(OAc)2, P(o-tolyl)3, DMF, ethyl acrylate, Et3N, reflux under N2, 6 h;
(c) H2(g), 10% Pd/C, MeOH, 25 �C, 24 h; (d) NaOH (2 M), reflux, 3 h then
HCl 10% until pH � 2; (e) SOCl2 (4 mL), 30 �C until dryness then CH2Cl2
(25 mL), AlCl3 (400 mg, 3 equiv) 10 min, DDQ (304 mg, 1.3 equiv)
15 min.
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a mild oxidizing agent.6 This procedure, applied to
2,7-dihydroxynaphthalene, gives 6-hydroxyperinaphthe-
none. However, in both the cases the yields are low, and
complex mixtures result.6 Applying conditions reported
by Cooke et al.6 to 1,6-dihydroxynaphthalene, a suitable
substrate for obtaining 4-hydroxy-1H-phenalen-1-one (4-
hydroxyperinaphthenone), afforded unsatisfactory results,
as mixtures were formed in which the desired compound
was not detected by 1H NMR spectroscopy. No attempt
was made to optimize this strategy.

4-Methoxy-1H-phenalen-1-one (4-methoxyperinaphthe-
none, 1) and other perinaphthenones alike can be prepared
by the cyclization of b-1-naphthylpropanoic acids obtained
by the malonic ester synthesis, using 1-halogenomethyl
naphthalenes as starting materials (Scheme 2).6 This strat-
egy has been recognized as the most versatile synthesis of
phenalenes, 2,3-dihydrophenalenes, and 2,3-dihydrophe-
nalenones.6 However, 3-(2-methoxy-1-naphthyl)propanoic
acid (2), the direct precursor of 1, is formed in only moder-
ate yield,7 and moreover, in our hands the chloromethyla-
tion and malonate condensation steps required careful
handling for reproducible yields to be achieved. Therefore,
a different strategy was explored in the preparation of 2.

Thus, following a procedure slightly modified from that
in the literature,8 the solvent-free bromination of 4-
methoxynaphthalene with NBS/Al2O3 afforded 1-bromo-
2-methoxynaphthalene (5) with suitable purity for syn-
thetic purposes. Standard Heck–Fujiwara treatment9 of 5
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Scheme 2. Reagents and conditions: (a) p-formaldehyde, AcOH, HCl(g),
0 �C for 5 min then rt, 2 h; (b) NaOEt(s), THF, diethyl malonate, reflux,
2 h; (c) NaOH(aq) (6 M), 1 h reflux then H2SO4 98% until pH � 4; (d)
190 �C.
in the 4 mmol scale afforded acrylate 4 in 70% yield as a
single (E)-diastereomer. Interestingly, scaling this process
up just 4-fold led to a 68% yield of an inseparable mixture
of (E)- and (Z)-diastereomers with a 7:3 ratio in favor of
the (E)-diastereomer. The diminished stereoselectivity was
of no consequence, as hydrogenation of the mixture with
hydrogen over palladium–charcoal transformed both iso-
mers into ethyl 3-(2-methoxy-1-naphthyl)propanoate (3)
in an 85% yield.10 Ester 3 was then refluxed with aqueous
NaOH solution (2 M, 120 �C, 3 h) to obtain 2 in quantita-
tive yield after acidic workup.

Typically, substrates like 2 are cyclized using Friedel–
Crafts conditions which, after dehydrogenation, afford
perinaphthenones in good yields.11 Therefore, the attrac-
tive variant reported by Sarvani and Sharghi12 was tested;
2 (0.5 mmol) was mixed with p-TSA�H2O (0.09 mmol) and
graphite (0.15 g) at 140 �C. By using these conditions, we
obtained 10% of 4-methoxy-1H-phenalen-1-one (4-meth-
oxyperinaphthenone, 1) as the only product (48% based
on recovered 2) after careful purification by preparative
TLC (n-hexane/diethyl ether 1:1.5). Changing the tempera-
ture from 110 to 190 �C did not improve the yield, nor did
the varying p-TSA�H2O in the range of 0.01–0.1 mmol.
Therefore, a more conventional strategy was explored
using a ‘one pot’ procedure (Scheme 3). Treating 2 with
thionyl chloride followed by adding CH2Cl2 and AlCl3 at
30 �C afforded a mixture of 2,3-dihydro-4-methoxy-1H-
phenalen-1-one (4-methoxyperinaphthanone, 6) and 4-
methoxy-1H-phenalen-1-one (4-methoxyperinaphthenone,
1).13 Adding DDQ to the previous slurry completely trans-
formed the 2,3-dihydro compound 6 to 1, which, after puri-
fication by column chromatography, was obtained in 64%
overall yield.
O
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For identification purposes, 2,3-dihydro-4-methoxy-1H-
phenalen-1-one (4-methoxyperinaphthanone, 6) was
obtained using the above mentioned procedure for com-
pound 1 without adding DDQ and purified by column
chromatography using CH2Cl2 as an eluent (54% yield).14

The product slowly decomposed to 1 in open air atmo-
sphere at 30 �C.

In summary, we have developed a five-step synthesis of
4-methoxy-1H-phenalen-1-one (4-methoxyperinaphthe-
none, 1) starting from 2-methoxynaphthalene in a 36% glo-
bal yield. The use of a Heck–Fujiwara coupling and the
one-pot cyclization procedure significantly improved the
previously reported methods. Further studies focusing on
the use of 1 in the synthesis of natural phenylphenalenones
or structural analogs are currently underway.
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